Search results

Search for "silyl enol ethers" in Full Text gives 46 result(s) in Beilstein Journal of Organic Chemistry.

(Bio)isosteres of ortho- and meta-substituted benzenes

  • H. Erik Diepers and
  • Johannes C. L. Walker

Beilstein J. Org. Chem. 2024, 20, 859–890, doi:10.3762/bjoc.20.78

Graphical Abstract
  • cyclopropanation [44] (to (±)-66) of α-hydroxy silyl enol ethers (±)-65 followed by an acid-catalysed pinacol rearrangement to (±)-67. As exemplary derivatizations of 5-oxo-BCH (±)-67, 1,5-BCHs (±)-68, (±)-69 and (±)-70 were accessed by reductive amination, ketone reduction, and Horner–Wadsworth–Emmons olefination
PDF
Album
Review
Published 19 Apr 2024

Recent advancements in iodide/phosphine-mediated photoredox radical reactions

  • Tinglan Liu,
  • Yu Zhou,
  • Junhong Tang and
  • Chengming Wang

Beilstein J. Org. Chem. 2023, 19, 1785–1803, doi:10.3762/bjoc.19.131

Graphical Abstract
  • and colleagues achieved a significant breakthrough by sequentially unveiling a series of decarboxylative alkylation reactions involving heteroarenes 22, enamides 24, N-arylglycine derivatives 26, and silyl enol ethers 28 [21][22]. Notably, these transformations were accomplished using only a catalytic
PDF
Album
Review
Published 22 Nov 2023

Asymmetric tandem conjugate addition and reaction with carbocations on acylimidazole Michael acceptors

  • Brigita Mudráková,
  • Renata Marcia de Figueiredo,
  • Jean-Marc Campagne and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2023, 19, 881–888, doi:10.3762/bjoc.19.65

Graphical Abstract
  • of −7.13 eV and an even more negative NBO charge of −0.368 at the C-2 position. We can confer from these data that Zn enolates obtained from acylimidazoles are somewhat less reactive than silyl enol ethers obtained in the Lewis acid-promoted conjugate addition of Grignard reagents [23]. This finding
PDF
Album
Supp Info
Full Research Paper
Published 16 Jun 2023

Enolates ambushed – asymmetric tandem conjugate addition and subsequent enolate trapping with conventional and less traditional electrophiles

  • Péter Kisszékelyi and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2023, 19, 593–634, doi:10.3762/bjoc.19.44

Graphical Abstract
  • TMSOTf) promoted trapping gave the aldol adducts 4 in good to excellent diastereoselectivity (up to a single diastereomer), but the yields were relatively low (25–44%). To overcome this limitation, the authors used TMSOTf to prepare and isolate the corresponding silyl enol ethers, which were later
PDF
Album
Review
Published 04 May 2023

Asymmetric synthesis of a stereopentade fragment toward latrunculins

  • Benjamin Joyeux,
  • Antoine Gamet,
  • Nicolas Casaretto and
  • Bastien Nay

Beilstein J. Org. Chem. 2023, 19, 428–433, doi:10.3762/bjoc.19.32

Graphical Abstract
  • oxidation in presence of DMP. The assembly of aldehyde 8 and methyl ketone 15 was envisaged through a stereoselective aldol reaction. After unsuccessful attempts of Mukaiyama aldol reactions with silyl enol ethers [28], we found that dicyclohexylboron enolate 20, made in situ from ketone 15 and Cy2BCl in
PDF
Album
Supp Info
Letter
Published 03 Apr 2023

NaI/PPh3-catalyzed visible-light-mediated decarboxylative radical cascade cyclization of N-arylacrylamides for the efficient synthesis of quaternary oxindoles

  • Dan Liu,
  • Yue Zhao and
  • Frederic W. Patureau

Beilstein J. Org. Chem. 2023, 19, 57–65, doi:10.3762/bjoc.19.5

Graphical Abstract
  • limited substrate scopes (Scheme 1a). With the rapid development of sustainable chemistry, developing low-cost and transition-metal-free photocatalytic methods has become a strategic priority. In 2019 [54], the groups of Fu and Shang pioneered the photocatalytic decarboxylative alkylation of silyl enol
  • ethers and N-heteroarenes by using a novel catalytic system based on sodium iodide (NaI) and triphenylphosphine (PPh3), suggested to function as an electron donor–acceptor (EDA) complex [55][56][57][58][59][60]. Compared to previously reported radical reactions, this novel catalytic system has the key
PDF
Album
Supp Info
Letter
Published 16 Jan 2023

Electrochemical Friedel–Crafts-type amidomethylation of arenes by a novel electrochemical oxidation system using a quasi-divided cell and trialkylammonium tetrafluoroborate

  • Hisanori Senboku,
  • Mizuki Hayama and
  • Hidetoshi Matsuno

Beilstein J. Org. Chem. 2022, 18, 1040–1046, doi:10.3762/bjoc.18.105

Graphical Abstract
  • has also been applied to organic synthesis [17][18][19][20]. However, when electrochemical oxidation of amides/carbamates in the presence of nucleophiles, such as electron-rich arenes or silyl enol ethers, is carried out for Friedel–Crafts-type amidomethylation, electrochemical oxidation of electron
  • -rich arenes or silyl enol ethers preferentially takes place at the anode due to their, in general, more positive oxidation potentials than those of amides/carbamates. Therefore, Friedel–Crafts-type amidomethylation by using Shono oxidation is successfully carried out as a two-step process
PDF
Album
Supp Info
Letter
Published 18 Aug 2022

Development of N-F fluorinating agents and their fluorinations: Historical perspective

  • Teruo Umemoto,
  • Yuhao Yang and
  • Gerald B. Hammond

Beilstein J. Org. Chem. 2021, 17, 1752–1813, doi:10.3762/bjoc.17.123

Graphical Abstract
  • , olefins, silyl enol ethers, vinyl acetates, sulfides and so on, under mild conditions with high selectivity and yields [29][30][31][32]. All these reactions could be carried out routinely using standard glassware in normal laboratory environments and without any specialist training. Some interesting
  • ], electron-rich alkenes (entry 3) [65][66], alkyl sulfides (entry 4) [65][67], 1,3-dicarbonyl compounds [65][68], phosphonate esters (entry 5) [65], steroidal silyl enol ethers and enol acetates (entry 6) [65], pyrimidine bases and nucleosides (entry 7) [67][69], phenylalkynes (entry 8) [70], anthraquinones
  • combination was effective for the fluorination of silyl enol ethers of indanones and tetralones, forming the fluorinated products in up to 91% ee. The DHQDA/Selectfluor combination was effective also for acyclic esters, with outcomes up to 87% ee, and for cyclic keto esters, up to 80% ee. For oxindoles, the
PDF
Album
Review
Published 27 Jul 2021

Methodologies for the synthesis of quaternary carbon centers via hydroalkylation of unactivated olefins: twenty years of advances

  • Thiago S. Silva and
  • Fernando Coelho

Beilstein J. Org. Chem. 2021, 17, 1565–1590, doi:10.3762/bjoc.17.112

Graphical Abstract
  • hydroalkylation reactions of less activated substrates [31]. Later studies demonstrated that the true reason for the reaction success was not the putative in situ formation of silyl enol ethers but the HCl formation due to TMSCl hydrolysis. The HCl catalyzed the formation of the enolic form responsible for the
  • as Mn(0) and MnO2, that had been employed in the previous work by the same authors to ensure catalytic turnover [110]. Substrates containing functional groups, like esters, phthalimides, silyl enol ethers, boronates, ketones, tertiary alcohols, epoxides, and cyclobutanes, were compatible with the
PDF
Album
Review
Published 07 Jul 2021

A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries

  • Guido Gambacorta,
  • James S. Sharley and
  • Ian R. Baxendale

Beilstein J. Org. Chem. 2021, 17, 1181–1312, doi:10.3762/bjoc.17.90

Graphical Abstract
PDF
Album
Review
Published 18 May 2021

N-tert-Butanesulfinyl imines in the asymmetric synthesis of nitrogen-containing heterocycles

  • Joseane A. Mendes,
  • Paulo R. R. Costa,
  • Miguel Yus,
  • Francisco Foubelo and
  • Camilla D. Buarque

Beilstein J. Org. Chem. 2021, 17, 1096–1140, doi:10.3762/bjoc.17.86

Graphical Abstract
  • (Scheme 33) [122]. The group of Prasad reported the diastereoselective synthesis of β-amino ketone derivatives from N-tert-butanesulfinyl imines and silyl enol ethers of aryl methyl ketone [123]. The synthetic interest in β-amino ketones was exemplified in the synthesis of alkaloid (+)-sedamine (125
PDF
Album
Review
Published 12 May 2021

Prins cyclization-mediated stereoselective synthesis of tetrahydropyrans and dihydropyrans: an inspection of twenty years

  • Asha Budakoti,
  • Pradip Kumar Mondal,
  • Prachi Verma and
  • Jagadish Khamrai

Beilstein J. Org. Chem. 2021, 17, 932–963, doi:10.3762/bjoc.17.77

Graphical Abstract
  • 2,6 disubstituted 3,4-dimethylene-THP. Furman and co-workers’ THP synthesis from propargylsilane. THP synthesis from silyl enol ethers. Rychnovsky and co-workers’ strategy for THP synthesis from hydroxy-substituted silyl enol ethers. Li and co-workers’ germinal bissilyl Prins cyclization strategy to
PDF
Album
Review
Published 29 Apr 2021

Synthesis, crystal structures and properties of carbazole-based [6]helicenes fused with an azine ring

  • Daria I. Tonkoglazova,
  • Anna V. Gulevskaya,
  • Konstantin A. Chistyakov and
  • Olga I. Askalepova

Beilstein J. Org. Chem. 2021, 17, 11–21, doi:10.3762/bjoc.17.2

Graphical Abstract
  • are often difficult to separate. Another drawback of this method is the difficulty of scaling, since the reaction requires strong dilution to prevent the [2π + 2π] dimerization of the starting stilbene. Among other approaches to the carbazole-based helicenes are the Diels–Alder reaction of silyl enol
  • ethers of 3,6-diacetylcarbazole with p-benzoquinone (Scheme 1B) [49], the double Buchwald–Hartwig amination of 4,4'-biphenanthrene derivatives (Scheme 1C) [45] and a enantioselective Fischer indolization–oxidation protocol (Scheme 1D) [43]. Each method is not without drawbacks such as hardly available
PDF
Album
Supp Info
Full Research Paper
Published 04 Jan 2021

Fluorohydration of alkynes via I(I)/I(III) catalysis

  • Jessica Neufeld,
  • Constantin G. Daniliuc and
  • Ryan Gilmour

Beilstein J. Org. Chem. 2020, 16, 1627–1635, doi:10.3762/bjoc.16.135

Graphical Abstract
  • )/I(III) catalysis [35][36][37]. Moreover, elegant studies by Hara and co-workers have demonstrated that α-fluoroketones could be prepared by exposing silyl enol ethers to stoichiometric p-ToIIF2, in the presence of BF3·OEt2 and NEt3/HF 1:2 [38]. A report by Kitamura and co-workers in which the direct
  • ]. (A) Synthetic routes to α-fluoroketones from silyl enol ethers or acetophenone derivatives. (B) Selected Au-catalysed syntheses of α-fluoroketones from alkynes. (C) This work: synthesis of α-fluoroketones from pentynyl benzoates via I(I)/I(III) catalysis. X-ray molecular structure of compound 2
PDF
Album
Supp Info
Full Research Paper
Published 10 Jul 2020

Photoredox-catalyzed silyldifluoromethylation of silyl enol ethers

  • Vyacheslav I. Supranovich,
  • Vitalij V. Levin and
  • Alexander D. Dilman

Beilstein J. Org. Chem. 2020, 16, 1550–1553, doi:10.3762/bjoc.16.126

Graphical Abstract
  • Vyacheslav I. Supranovich Vitalij V. Levin Alexander D. Dilman N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation 10.3762/bjoc.16.126 Abstract A method for the light-mediated fluoroalkylation of silyl enol ethers with (bromodifluoromethyl
  • source of hydrogen [21]. We thought that silane 1 could couple with silyl enol ethers in the presence of a photocatalyst affording fluoroalkylation products. Indeed, silyl enol ethers were found to be good acceptors of fluorinated radicals, and the resultant silyloxy-substituted radicals underwent single
  • employed in photoredox reactions to scavenge acidic byproducts [28][29], could not be employed. Silane 1 is easily destroyed by bases (even by the amide group [30]) followed by the rapid addition of difluorocarbene to silyl enol ethers [19][20]. Disappointingly, we were unable to isolate ketone 3a using
PDF
Album
Supp Info
Letter
Published 29 Jun 2020

The McKenna reaction – avoiding side reactions in phosphonate deprotection

  • Katarzyna Justyna,
  • Joanna Małolepsza,
  • Damian Kusy,
  • Waldemar Maniukiewicz and
  • Katarzyna M. Błażewska

Beilstein J. Org. Chem. 2020, 16, 1436–1446, doi:10.3762/bjoc.16.119

Graphical Abstract
  • reagent for the formation of silyl enol ethers [10]. However, these reactions often required higher temperatures (up to 100 °C) or were applicable to only certain types of functional groups, such as methoxymethyl ethers [10]. Still, BTMS, due to its balanced effectiveness and high chemoselectivity, is the
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2020

Copper catalysis with redox-active ligands

  • Agnideep Das,
  • Yufeng Ren,
  • Cheriehan Hessin and
  • Marine Desage-El Murr

Beilstein J. Org. Chem. 2020, 16, 858–870, doi:10.3762/bjoc.16.77

Graphical Abstract
  • wide variety of substrates including silyl enol ethers, heteroaromatics and alkynes using an electrophilic CF3+ source (8 or 9), opening new opportunities to access pharmaceutically relevant trifluoromethylated products under mild reaction conditions. The ligand-based SET step involved the
PDF
Album
Review
Published 24 Apr 2020

Recent advances in photocatalyzed reactions using well-defined copper(I) complexes

  • Mingbing Zhong,
  • Xavier Pannecoucke,
  • Philippe Jubault and
  • Thomas Poisson

Beilstein J. Org. Chem. 2020, 16, 451–481, doi:10.3762/bjoc.16.42

Graphical Abstract
  • addition of a trifluoromethyl radical to silyl enol ethers derived from ketones using the same reaction conditions (Scheme 12) [28]. 1.3 Oxidation reactions In 2015, Bissember and co-workers used the Sauvage catalyst to generate an α-amino radical, which was used to perform the synthesis of annulated
  • ([Cu(I)]*/[Cu(II)]). Upon irradiation at 455 nm, the authors used this complex in ATRA reactions, with various ATRA reagents, including α-bromomalonates and benzyl bromides, in combination with a broad range of alkenes (allylamine, homoallyl alcohol, styrene derivatives, and silyl enol ethers). The
  • )(dap)2]Cl. Trifluoromethyl methoxylation of styryl derivatives using [Cu(I)(dap)2]PF6. All redox potentials are reported vs SCE. Trifluoromethylation of silyl enol ethers. Synthesis of annulated heterocycles upon oxidation with the Sauvage catalyst. Oxoazidation of styrene derivatives using [Cu(dap)2
PDF
Album
Review
Published 23 Mar 2020

A review of asymmetric synthetic organic electrochemistry and electrocatalysis: concepts, applications, recent developments and future directions

  • Munmun Ghosh,
  • Valmik S. Shinde and
  • Magnus Rueping

Beilstein J. Org. Chem. 2019, 15, 2710–2746, doi:10.3762/bjoc.15.264

Graphical Abstract
  • towards chiral 1,4-dicarbonyls bearing tertiary and all-carbon quaternary stereocenters via oxidative cross coupling of 2-acylimidazoles 85 with silyl enol ethers 86 (Scheme 32). Chiral Rh complex 87 was exploited as a Lewis acid catalyst for the purpose of activating the substrate towards anodic
PDF
Album
Review
Published 13 Nov 2019

Synthesis of aryl cyclopropyl sulfides through copper-promoted S-cyclopropylation of thiophenols using cyclopropylboronic acid

  • Emeline Benoit,
  • Ahmed Fnaiche and
  • Alexandre Gagnon

Beilstein J. Org. Chem. 2019, 15, 1162–1171, doi:10.3762/bjoc.15.113

Graphical Abstract
  • copper(II) triflate and Hünig's base, rearranges to give the corresponding 2-(arylthio)-3-alkyl-1,3-butadiene 10 [12]. Reacting methyl 2-phenylthiocyclopropyl ketone 11 with silyl enol ethers 12 in the presence of dimethylaluminium chloride leads to the functionalized cyclopentanes 13 via a highly
PDF
Album
Supp Info
Letter
Published 27 May 2019

Multicomponent reactions (MCRs): a useful access to the synthesis of benzo-fused γ-lactams

  • Edorta Martínez de Marigorta,
  • Jesús M. de Los Santos,
  • Ana M. Ochoa de Retana,
  • Javier Vicario and
  • Francisco Palacios

Beilstein J. Org. Chem. 2019, 15, 1065–1085, doi:10.3762/bjoc.15.104

Graphical Abstract
  • in this manner, although, once again, ortho-substituted anilines 2 did not render the cyclic product, as the final lactamization step is probably impeded by sterical reasons. On the other hand, silyl enol ethers of acetone, acetophenone, methyl acetate, 2-hydroxyfuran and cyclohexanone worked well
PDF
Album
Review
Published 08 May 2019

6’-Fluoro[4.3.0]bicyclo nucleic acid: synthesis, biophysical properties and molecular dynamics simulations

  • Sibylle Frei,
  • Andrei Istrate and
  • Christian J. Leumann

Beilstein J. Org. Chem. 2018, 14, 3088–3097, doi:10.3762/bjoc.14.288

Graphical Abstract
  • enlargement via selective cyclopropane ring opening [46][47][48][49]. Consequently, the synthesis started from the previously described bicyclic silyl enol ethers 1α/β (Scheme 1) [50][51]. The two anomers of 1 were individually transformed into the trimethylsilyl (TMS)-protected sugars 2α/β by adapting and
  • duplexes and torsion angles of c) 6’F-bc4,3-DNA/DNA, and d) 6’F-bc4,3-DNA/RNA duplexes extracted from a 100 ns molecular dynamics trajectory. Synthesis of the gem-difluorinated glycal 4 from the silyl enol ethers 1α/β. Reagents and conditions: a) BSA, DCM, rt, 17 h, 86%; b) BSA, DCM, rt, 18 h, 88%; c
PDF
Album
Supp Info
Full Research Paper
Published 20 Dec 2018

Visible light-mediated difluoroalkylation of electron-deficient alkenes

  • Vyacheslav I. Supranovich,
  • Vitalij V. Levin,
  • Marina I. Struchkova,
  • Jinbo Hu and
  • Alexander D. Dilman

Beilstein J. Org. Chem. 2018, 14, 1637–1641, doi:10.3762/bjoc.14.139

Graphical Abstract
  • equivalents of the iododifluoromethyl carbanion [33][34][35][36]. We also demonstrated that iodides 1 can alkylate silyl enol ethers [37] under photoredox conditions [38][39][40]. However, the latter protocol is inapplicable to the addition to electron-deficient alkenes since a radical resulting from the
PDF
Album
Supp Info
Letter
Published 02 Jul 2018

A survey of chiral hypervalent iodine reagents in asymmetric synthesis

  • Soumen Ghosh,
  • Suman Pradhan and
  • Indranil Chatterjee

Beilstein J. Org. Chem. 2018, 14, 1244–1262, doi:10.3762/bjoc.14.107

Graphical Abstract
  • of carbonyls were established by Wirth et al. Nucleophile transfer from silyl enol ethers 90 delivered α-functionalized carbonyls 91 with good enantioselectivity [68]. “Umpolung” reactivity and silyl-tethered enol ethers allowed the delicate synthesis of α-functionalized carbonyls (Scheme 19). C2
PDF
Album
Review
Published 30 May 2018

Photocatalytic formation of carbon–sulfur bonds

  • Alexander Wimmer and
  • Burkhard König

Beilstein J. Org. Chem. 2018, 14, 54–83, doi:10.3762/bjoc.14.4

Graphical Abstract
PDF
Album
Review
Published 05 Jan 2018
Other Beilstein-Institut Open Science Activities